


Preparação



Protensão



PROTENDIDO CONCRETO



Injeção



Imagem Aérea da Empresa



Pátio Fabril Usinagem



Horta Comunitária



Pátio Fabril Engenharia



Cursos In Company ministrados pelo SENAI

## Rudloff: Tradição, Agilidade e Experiência

A **Rudloff** foi fundada em 1960, como indústria de materiais para a construção civil, com especialização em concreto protendido. Ao longo de mais de 50 anos, a empresa se desenvolveu em diversos campos de atuação, capacitando-se para fornecer soluções de engenharia diferenciadas e serviços especializados. Atualmente, entre os produtos e serviços oferecidos pela **Rudloff** destacam-se principalmente:

- Protensão de estruturas;
- Emendas para barras de aço CA-50;
- Aparelhos de apoio metálicos;
- Pontes executadas por segmentos empurrados;
- Movimentação de cargas pesadas;
- Usinagem mecânica.

Em cada área onde atua, a **Rudloff** tem a preocupação constante de oferecer aos clientes uma solução técnica e economicamente interessante, através de soluções personalizadas. A empresa trabalha obedecendo elevados padrões de qualidade, normas técnicas e exigências do mercado globalizado. É pioneira e a única brasileira com Sistema de Gestão da Qualidade certificada pela ISO 9001:2008 como fornecedora de componentes de concreto protendido, entre outros produtos.

A preocupação da empresa em atingir excelência tecnológica, de serviços e produtos, respeitando o meio ambiente, o homem e a sociedade onde se insere lhe permite buscar uma atuação voltada para a sustentabilidade. Com o objetivo de se desenvolver neste sentido, a **Rudloff** é associada do Instituto Ethos, afirmando seu compromisso em adotar práticas sociais e responsáveis, contribuindo para a construção de um cenário mais promissor para todos.

Visite nosso site e saiba mais! www.rudloff.com.br

## POR QUE USAR ESTE CATÁLOGO

Este catálogo é recomendado aos profissionais envolvidos no projeto e/ou na execução das estruturas em concreto protendido, para fins didáticos e de divulgação desta tecnologia.

Seu conteúdo envolve a apresentação de informações básicas sobre o sistema de protensão Rudloff, suas principais características e etapas, seus componentes, equipamentos e alguns cuidados a serem tomados para a aplicação da tecnologia de protensão.

Aqui não serão tratados casos especiais, mas soluções convencionais genéricas, conforme a linha padrão de produção da Rudloff. Informações sobre casos específicos, que não podem ser solucionados por meio deste catálogo, devem ser solicitadas ao departamento técnico da Rudloff.

## **POR QUE PROTENDER**

Protender uma estrutura de concreto é fazer uso de uma tecnologia inteligente, eficaz e duradoura. Inteligente, pois permite que se aproveite ao máximo a resistência mecânica dos seus principais materiais constituintes, o concreto e o aço, reduzindo assim suas quantidades; eficaz, devido à sua superioridade técnica sobre soluções convencionais, proporcionando estruturas seguras e confortáveis; duradoura, porque possibilita longa vida útil aos seus elementos. Só estas características já justificariam o uso da protensão em estruturas. Mas além disso tudo, uma das principais vantagens das soluções em concreto protendido é o fato delas possibilitarem ótimas relações custo-benefício. A protensão pode resultar, em muitos casos, em estruturas com baixa ou nenhuma necessidade de manutenção ao longo de sua vida útil, além de permitir outras características como:

- Grandes vãos;
- Controle e redução de deformações e da fissuração;
- Possibilidade de uso em ambientes agressivos;
- Projetos arquitetônicos ousados;
- Aplicação em peças pré-fabricadas;
- Recuperação e reforço de estruturas;
- Lajes mais esbeltas do que as equivalentes em concreto armado: isso pode reduzir tanto a altura total de um edifício, como o seu peso e, consequentemente, o carregamento das fundações.

As vantagens da tecnologia são diversas e justificam o seu emprego mundialmente, para a execução de projetos arquitetônicos convencionais e arrojados, em obras de pequeno, médio e grande porte.



Imagem 01: Protensão do Edifício Igarassu, São Paulo - SP



#### POR QUE USAR O SISTEMA RUDLOFF

O sistema de protensão Rudloff foi criado em 1954, como o primeiro processo genuinamente brasileiro para protender estruturas. Permite às estruturas o aproveitamento de todas as vantagens técnicas que a tecnologia do concreto protendido possibilita. Desde a sua criação, o sistema vem sendo constantemente aperfeiçoado, em busca de equipamentos mais seguros e modernos, visando soluções mais ágeis e econômicas.

Com exceção do aço de protensão, a Rudloff fabrica todos os componentes do seu sistema de protensão. É pioneira ao fazê-lo no Brasil a partir de um sistema de gestão certificado pela Norma ISO 9001, o que confere às peças um alto padrão de qualidade, uma vez que elas são produzidas a partir de fornecedores de matéria-prima homologados e com inspeções de controle periódicas, nos diferentes estágios de fabricação. Isso permite sua total rastreabilidade, desde a entrada da matéria-prima nas máquinas produtivas, até a instalação do produto no local de aplicação.

Além de fornecer material e mão-de-obra para o serviço de protensão, a Rudloff disponibiliza pessoal tecnicamente preparado para colaborar com projetistas no detalhamento de projetos e na definição de métodos de execução práticos, seguros e econômicos.

O equipamento de protensão Rudloff é simples, robusto e confiável para garantir a segurança em todas as operações de instalação, protensão e injeção dos cabos.

O sistema de protensão Rudloff é apropriado para obras de pequeno a grande porte. Destina-se principalmente ao pós-tensionamento de estruturas de concreto, porém pode ser utilizado para a protensão de outros materiais, como aço e madeira, em casos de projetos especiais.

Suas aplicações mais comuns são em edifícios, reservatórios, pistas de aeroportos, pisos, pontes, viadutos e barragens. As principais características do sistema são:

- Simplicidade, rapidez e segurança na obtenção da protensão;
- Possibilidade de aplicação para cordoalhas de diâmetro 12,7mm ou 15,2mm;
- Versatilidade de uso, podendo ser aplicado tanto para protensão aderente, com a injeção de nata de cimento nas bainhas, como para protensão não aderente, com cordoalhas engraxadas;
- Possibilidade de protensões parciais;
- Gama variada de ancoragens ativas, passivas, de emenda e intermediárias;
- Tensionamento simultâneo de todas as cordoalhas, com cravação individual de cada uma no bloco de ancoragem;
- Possibilidade de enfiação dos cabos nas bainhas antes ou após a concretagem;
- Possibilidade de uso para unir peças pré-moldadas;
- Eficácia na injeção das bainhas;
- Fabricação dos componentes mecânicos e equipamentos com padrão de qualidade ISO 9001.



Imagem 02: Certificado de Qualidade NBR ISO 9001:2008 reconhecido pelo Bureau Veritas



Imagem 03: Interior da Fábrica

## **ALGUMAS OBRAS DE PROTENSÃO RUDLOFF**



#### Ponte Jurubatuba, São Paulo - SP

Entre outras vantagens, a protensão em pontes pode permitir geometrias complexas, sobrecargas elevadas, grandes vãos, flechas reduzidas e longa vida útil às estruturas.

Imagem 04

#### UHE Foz de Chapecó, Chapecó - SC

Devido aos grandes esforços é importante a protensão nos pilares e vigas dos vertedouros das UHE.



Imagem 05



#### Shopping Center em São Paulo - SP

Entre outras vantagens, a protensão de lajes possibilita estruturas esbeltas e grandes vãos entre os pilares, resultando em espaços amplos e estacionamentos confortáveis para o usuário.

Imagem 06

#### Santuário Madre Paulina, Nova Trento - SC A tecnologia do concreto protendido possibilita a execução de projetos arquitetônicos e estruturais arrojados e personalizados para os mais diversos fins.



Imagem 07



## O QUE É PROTENSÃO ADERENTE

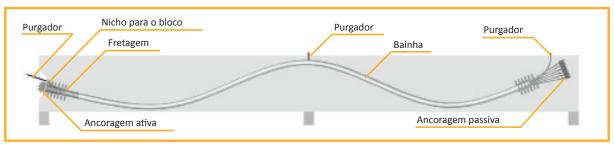



Imagem 08: Representação esquemática de um cabo Rudloff de cordoalhas aderentes em corte longitudinal

É o sistema de protensão no qual a injeção de nata de cimento nas bainhas garante a aderência mecânica da armadura de protensão ao concreto em todo o comprimento do cabo, além de assegurar a protensão das cordoalhas contra a corrosão.

O cabo de protensão é composto basicamente por uma ou mais cordoalhas de aço, ancoragens, bainha metálica e purgadores. As cordoalhas ficam inicialmente soltas dentro da bainha, o que permite a sua movimentação na ocasião da protensão. Após a concretagem da estrutura e a cura do concreto, os cabos são protendidos e é injetada nata de cimento no interior das bainhas.

As cordoalhas mais utilizadas neste sistema de protensão são compostas de sete fios e têm diâmetro de 12,7mm ou 15,5mm. São produzidas sempre na condição de relaxação baixa e fabricadas com seis fios de mesmo diâmetro nominal encordoados em torno de um fio central de diâmetro ligeiramente maior do que os demais.

| CARACTERÍSTICAS DAS CORDOALH                                                              | AS DE AÇO CP190 PARA PROTENSÃ                      | O ADERENTE                               |  |  |  |
|-------------------------------------------------------------------------------------------|----------------------------------------------------|------------------------------------------|--|--|--|
| ESPECIFICAÇÃO                                                                             | Ø12,7 mm ou Ø1/2"                                  | Ø15,2 mm ou Ø5/8"                        |  |  |  |
| Diâmetro nominal da cordoalha*                                                            | 12,7 mm                                            | 15,2 mm                                  |  |  |  |
| Área nominal da seção de aço da cordoalha*<br>(valor recomendado para cálculo estrutural) | 100,9 mm²                                          | 143,4 mm²                                |  |  |  |
| Massa nominal*                                                                            | 0,792 kg/m                                         | 1,126 kg/m                               |  |  |  |
| Carga de ruptura mínima*                                                                  | 18730 kgf = 187,30 kN                              | 26580 kgf = 265,80 kN                    |  |  |  |
| Carga a 1% de deformação mínima*                                                          | 16860 kgf = 168,60 kN                              | 23920 kgf = 239,20 kN                    |  |  |  |
| Relaxação máxima após 1000h*                                                              | 3,5%                                               | 3,5%                                     |  |  |  |
| Módulo de elasticidade**                                                                  | 202 kN/mm², +/-3% 202 kN/mm², +/- 3%               |                                          |  |  |  |
| * Conforme NBR 7483:2004                                                                  | or é fornecido pelo fabricante. Adotamos valor sug | erido em Catálogo Belgo / Setembro 2003. |  |  |  |

Tabela 01: Características das cordoalhas para protensão aderente

#### **BAINHAS**

As principais funções das bainhas são possibilitar a movimentação das cordoalhas durante a operação de protensão e receber a nata de cimento, na operação de injeção.

As bainhas metálicas Rudloff são normalmente fabricadas em barras de 6,0 m de comprimento, com espessura mínima de 0,3mm. São resistentes para suportar o peso dos respectivos cabos e garantir sua fixação e posicionamento. Suas ondulações helicoidais lhes permitem flexibilidade longitudinal e rigidez transversal. Bainhas usadas em vigas têm seção transversal circular, enquanto em lajes, usa-se bainhas chatas. Sua escolha deve ser feita em função da quantidade de cordoalhas do cabo, conforme as dimensões indicadas na Tabela 18.

As emendas de bainha são asseguradas por meio de luvas externas, feitas com o mesmo material das bainhas e diâmetro ligeiramente maior.

## POR QUE PROTENDER COM ADERÊNCIA

Quando a protensão é aplicada nas cordoalhas, são criadas tensões internas na estrutura, para combater esforços resultantes dos carregamentos e melhorar o desempenho do conjunto. As cordoalhas ficam constantemente esticadas, durante toda a vida útil da estrutura. As tensões elevadas necessárias para esticar as cordoalhas devem ser absorvidas pelo sistema de protensão, de forma a proteger as estruturas e seus usuários.

A protensão aderente é um dos recursos capazes de oferecer esta proteção, pois permite que a armadura de protensão e o concreto trabalhem em conjunto, de forma integrada. Isso significa que se, eventualmente, um cabo for cortado ou se romper, a estrutura absorverá as tensões resultantes do rompimento. Nestes casos, a perda de força será localizada, pois a aderência permite que o comprimento remanescente do cabo conserve a protensão. A protensão aderente possibilita, assim, estruturas mais seguras.

A etapa de injeção das bainhas pode ser realizada simultaneamente ao cronograma da obra, sem interferir em outras etapas da mesma.



Imagem 09: Execução de laje com protensão aderente. No detalhe, seção transversal de um corpo de prova de ensaio com aderência.

#### PRINCIPAIS CARACTERÍSTICAS

- O aço de protensão pode ser considerado no cálculo do estado limite último, pois está solidarizado com o concreto. Isso permite redução expressiva na quantidade de armadura passiva necessária à estrutura.
- A aderência possibilita a execução de eventuais furos e colocação de chumbadores nas peças concretadas, após a devida aprovação do projetista a este respeito.
- A injeção de nata de cimento oferece maior proteção ao cabo contra a corrosão.
- As cordoalhas podem ser colocadas nas bainhas antes ou depois da concretagem. Isso permite, por exemplo, que elementos pré-fabricados sejam unidos por meio da protensão.
- As estruturas com protensão aderente apresenta maior capacidade de resistência ao fogo em caso de incêndio.
- O sistema apresenta variada gama de ancoragens passivas, ativas, intermediárias e de emenda, tanto para cordoalhas de 12,7mm, quanto de 15,2mm.



## O QUE É PROTENSÃO NÃO ADERENTE

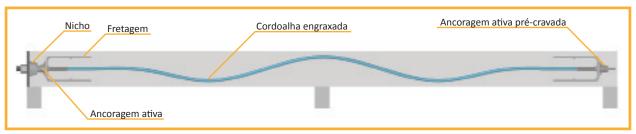



Imagem 10: Representação esquemática de um cabo Rudloff de monocordoalha engraxada em corte longitudinal

É o sistema de protensão no qual não existe aderência entre o aço de protensão e a estrutura de concreto. Os cabos são compostos basicamente por uma ancoragem em cada extremidade e uma cordoalha de aço envolta com graxa e capa de polietileno de alta densidade. A graxa possibilita a movimentação das cordoalhas nas bainhas, por ocasião da protensão. Após a concretagem da estrutura e a cura do concreto, os cabos são protendidos e ancorados.

Neste sistema, como não existe aderência entre a armadura de protensão e o concreto, a manutenção da tensão ao longo da vida útil da estrutura se concentra nas ancoragens. Devido a isso, é fundamental que elas sejam fabricadas com elevado padrão de qualidade.

As cordoalhas usadas no sistema de protensão não aderente são as mesmas utilizadas no sistema aderente, compostas de sete fios e com diâmetro de 12,7mm ou 15,2mm.

#### O CABO ENGRAXADO

O cabo engraxado é fabricado por meio de processo contínuo, através do qual a cordoalha é coberta com graxa inibidora de corrosão e então revestida com uma capa de polietileno de alta densidade (PEAD), a qual constitui a bainha do cabo.

As bainhas de PEAD que revestem individualmente as cordoalhas devem ter espessura da parede mínima de 1mm e seção circular com diâmetro interno que permita o livre movimento da cordoalha em seu interior. Devem ser impermeáveis, duráveis e resistentes aos danos provocados por manuseio no transporte, instalação, concretagem e tensionamento.

A graxa de proteção anticorrosiva e lubrificante deve ter características que não ataquem o aço, tanto no estado de repouso, como no estado limite característico de tensão desse aço.

| CARACTERÍSTICAS DAS CORDOALHAS                                                         | DE AÇO CP190 PARA PROTENSÃO                       | NÃO ADERENTE                             |
|----------------------------------------------------------------------------------------|---------------------------------------------------|------------------------------------------|
| ESPECIFICAÇÃO                                                                          | Ø12,7 mm ou Ø1/2"                                 | Ø15,2 mm ou Ø5/8"                        |
| Diâmetro nominal da cordoalha*                                                         | 12,7mm                                            | 15,2mm                                   |
| Área nominal da seção de aço da cordoalha* (valor recomendado para cálculo estrutural) | 100,9mm²                                          | 143,4mm²                                 |
| Massa nominal*                                                                         | 0,890 kg/m                                        | 1,240 kg/m                               |
| Carga de ruptura mínima*                                                               | 18730 kgf = 187,30 kN                             | 26580 kgf = 265,80 kN                    |
| Carga a 1% de deformação mínima*                                                       | 16860 kgf = 168,60 kN                             | 23920 kgf = 239,20 kN                    |
| Relaxação máxima após 1000h*                                                           | 3,5%                                              | 3,5%                                     |
| Módulo de elasticidade**                                                               | 202 kN/mm², +/-3%                                 | 202 kN/mm², +/- 3%                       |
| * Conforme NBR 7483:2004 **Conforme a NBR 7483:2004, este valor                        | r é fornecido pelo fabricante. Adotamos valor sug | erido em Catálogo Belgo / Setembro 2003. |

Tabela 02: Características das cordoalhas para protensão não aderente

## POR QUE PROTENDER SEM ADERÊNCIA

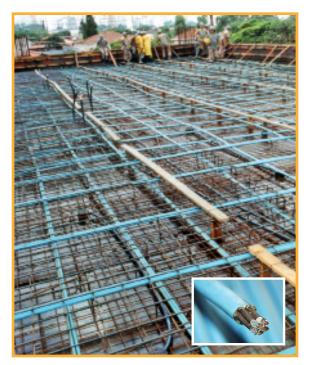



Imagem 11: Execução de laje com protensão não aderente. No detalhe, seção transversal de um cabo não aderente.

O uso de cordoalhas engraxadas apresenta características próprias, a serem observadas na escolha do tipo de protensão. A protensão não aderente pode ser executada a partir de equipamentos leves, facilmente aplicáveis em obras de pequeno porte. Isso possibilita ao concreto protendido ser competitivo com o concreto armado em edifícios residenciais com vãos pequenos (de 3 a 5 metros), o que não acontece com a protensão aderente. Além disso, os cabos engraxados são leves, de fácil manuseio e flexíveis, o que permite a existência de curvas em sua disposição em planta e possibilita o desvio de eventuais obstáculos.

Na protensão sem aderência não existe a etapa de injeção de nata de cimento nas bainhas e, consequentemente, não há no interior das bainhas o espaço destinado a esta nata. Isso possibilita que o centro de gravidade do cabo fique próximo às bordas inferior ou superior do elemento de concreto, permitindo melhor aproveitamento da altura útil do concreto.

A fabricação dos cabos é simples, pois as cordoalhas são fornecidas engraxadas e plastificadas pelo fabricante, sem a necessidade da sua enfiação posterior em bainhas. Porém, cabos engraxados requerem maior cuidado de manuseio, para evitar rasgos na bainha plástica, a qual é mais sensível que a bainha metálica.

#### PRINCIPAIS CARACTERÍSTICAS

- O coeficiente de atrito entre cabo e bainha é menor que no sistema aderente, possibilitando perdas menores e maior tensão remanescente na cordoalha.
- As cordoalhas podem ser instaladas uma a uma ou em feixes. São protendidas e ancoradas individualmente.
- As cordoalhas recebem proteção anticorrosiva de fábrica. Porém, as ancoragens convencionais não recebem proteção anticorrosiva, o que reduz a segurança do sistema. Por isso, a protensão sem aderência, a princípio, não é recomendada para ambientes agressivos.
- Eventuais falhas nas ancoragens significam desativação instantânea do cabo e de sua colaboração na estrutura.
- A execução de furos ou chumbamentos nas peças concretadas deve ser evitada, sob pena de machucar ou romper a cordoalha e provocar consequente perda total da protensão no cabo.
- A ausência de nata de cimento ao redor das cordoalhas diminui sua proteção contra o fogo, em caso de incêndio.
- Cabos engraxados possibilitam maiores excentricidades em sua disposição.



## COMO É FEITA A CONFECÇÃO DOS CABOS

Os cabos de protensão podem ser fabricados fora da forma de concretagem. Isso compreende o corte das cordoalhas, sua enfiação nas bainhas (na protensão aderente) e o posicionamento das ancoragens passivas existentes em suas extremidades. Os cabos podem, assim, ser transportados prontos até o local de concretagem e posicionados diretamente sobre os estribos de suporte, na forma.

De acordo com a NBR 14931:2003, o diâmetro interno das bainhas deve ser pelo menos 10mm a mais do que o diâmetro do respectivo cabo, para bainhas de seção circular, ou 6mm para bainhas chatas. Os diâmetros das bainhas indicados na Tabela 18 respeitam este requisito.







Imagem 12: Fabricação de cabos. Nos detalhes, equipamentos para o corte de cordoalhas.

#### **CABOS ENFIADOS APÓS A CONCRETAGEM**

A enfiação das cordoalhas nas bainhas pode ser feita após a concretagem da estrutura. As bainhas, com diâmetro interno maior que nos cabos pré-fabricados (ver Tabela 18), são colocadas vazias nos estribos de suporte. Deve-se ter muito cuidado com a vedação das uniões das bainhas e eventuais danos, para evitar a penetração de nata do concreto no seu interior, obstruindo a passagem das cordoalhas. A enfiação pode ser manual, para cabos curtos, ou mecânica, através de equipamento especial da Rudloff, no caso de cabos longos.

O processo apresenta vantagens como economia de mão-de-obra e equipamentos de transporte e diminuição do perigo de corrosão das cordoalhas. Oferece a possibilidade de se fazer parte da fabricação de cabos durante a cura do concreto, o que pode diminuir os prazos de execução da estrutura.

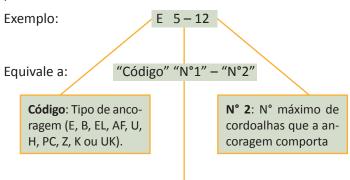
#### **RECOMENDAÇÕES PRÁTICAS**

Para a fabricação dos cabos, convém atender as seguintes recomendações:

- Inspecionar todo o aço de protensão antes do seu uso. O aço deve estar limpo, isento de óleo e de resíduos. Remover manualmente oxidações superficiais uniformes no aço e permitir o seu uso somente se, após a remoção, a superfície do metal estiver intacta, sem poros, riscos ou sinais de ataque. Oxidações localizadas podem ser perigosas e não admitidas.
- Executar ensaios para a comprovação das propriedades mecânicas do aço, sempre que houver dúvidas quanto à sua integridade.
- Cortar o aço por meio de disco esmeril rotativo ou tesoura, de acordo com o comprimento indicado no projeto. Verificar se neste já está incluído o comprimento necessário para a fixação do macaco de protensão.
- Fabricar cada cabo preferencialmente com aço de uma mesma bobina. Montar os cabos de protensão se possível antes da colocação de condutores de eletricidade e outros dispositivos mecânicos.
- Impedir que cabos e cordoalhas sejam arrastados sobre o solo ou sobre superfícies abrasivas.
- Providenciar a limpeza das extremidades dos cabos, retirando da superfície das cordoalhas, onde serão apoiados os macacos, todo o tipo de impureza existente, de forma a garantir o ajuste perfeito das cunhas do macaco de protensão.
- Proteger cabos e cordoalhas das intempéries.

ATENÇÃO!

Conforme a NBR 14931:2004, item A.5.4: "É vedado efetuar no elemento tensor, o corte com maçarico, bem como o endireitamento através de máquinas endireitadoras ou qualquer outro processo, pois esses procedimentos alteram radicalmente as propriedades físicas do aço."


## COMO SÃO AS ANCORAGENS RUDLOFF

As ancoragens são dispositivos capazes de manter o cabo em estado de tensão, transmitindo a força de protensão ao concreto ou ao elemento estrutural. São basicamente de guatro tipos:

- Ancoragens ativas tipo E, B, EL e AF: são as ancoragens nas quais se promove o estado de tensão no cabo, através do macaco de protensão.
- Ancoragens passivas tipo U, H e PC: são dispositivos embutidos no concreto, destinados a fixar a extremidade do cabo oposta àquele da ancoragem ativa. Somente recebem o esforço advindo da protensão executada na ancoragem ativa. A transferência da força de protensão para o concreto se dá por aderência das cordoalhas e por tensões de compressão entre a ancoragem e o concreto.
- Ancoragens de emenda tipo K e UK: são combinações de duas ancoragens, uma passiva e uma ativa, que permitem a continuação de cabos a partir de pontos intermediários.
- Ancoragens intermediárias tipo Z: são ancoragens posicionadas no meio dos cabos, quando suas extremidades forem inacessíveis para a protensão.

As combinações de ancoragens mais comuns são duas ativas ou uma ativa e uma passiva, as quais podem ser adotadas para protensão com ou sem aderência.

A nomenclatura Rudloff para ancoragens segue o seguinte padrão:



**N°1**: Diâmetro nominal da cordoalha usada na ancoragem, em décimos de polegadas. Pode ser "5", equivalendo a 0,5 polegadas (12,7mm) ou "6", equivalendo a 0,6 polegadas (15,2mm).















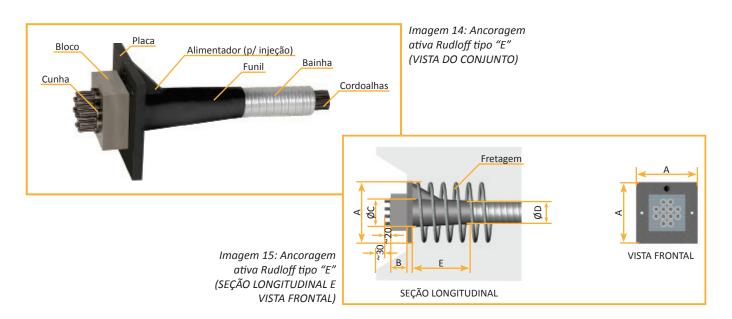






Imagem 13: Padrões de ancoragens Rudloff

TENCÃO!


As cunhas (clavetes) NUNCA devem ser reutilizadas. Os blocos, eventualmente, poderão ser reutilizados, desde que sejam recuperadas as condições para os quais foram projetados. Em caso de dúvidas, consulte a Rudloff.

A protensão faz com que a região das ancoragens seja altamente solicitada. Por isso, o concreto deve ter resistência adequada já desde o momento da aplicação da protensão. O valor da resistência do concreto deve ser indicado pelo projetista da estrutura.



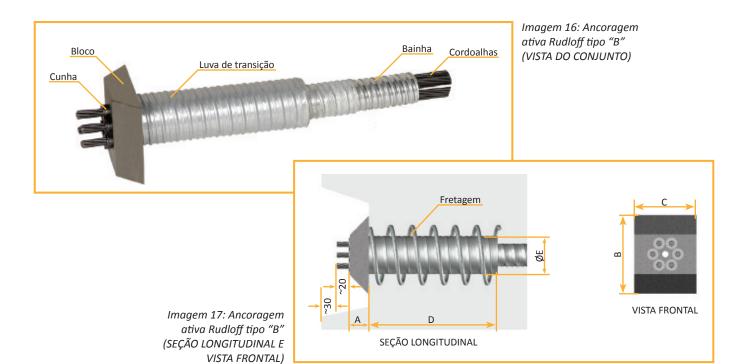
## **ANCORAGEM ATIVA TIPO "E"**

É composta por bloco de ancoragem com furos troncos cônicos, cunhas tripartidas e placa funil, repartidora de esforços sobre o concreto. A placa funil é o único componente da ancoragem que é posicionado na estrutura antes da concretagem.



|                        | DENOMINAÇÃO   | A (PLACA) | B (BLOCO) | ØC INTERNO<br>(FUNIL) | ØD INTERNO<br>(FUNIL) | E (FUNIL) | PESO<br>APROXIMADO<br>DO CONJUNTO |
|------------------------|---------------|-----------|-----------|-----------------------|-----------------------|-----------|-----------------------------------|
|                        | E 5-8 / E 5-9 | 220       | 63,5      | 110                   | 75                    | 280       | 16,0 kg                           |
| CORDOALHA              | E 5-12        | 245       | 63,5      | 110                   | 75                    | 280       | 20,0 kg                           |
| CORDOALHA              | E 5-19        | 300       | 76,2      | 135                   | 95                    | 340       | 35,0 kg                           |
| Ø12,7 mm<br>(ou Ø0,5") | E 5-22        | 340       | 88,9      | 150                   | 100                   | 435       | 48,0 kg                           |
| (00 \$0,5 )            | E 5-27        | 380       | 101,6     | 170                   | 110                   | 440       | 76,0 kg                           |
|                        | E 5-31        | 400       | 101,6     | 170                   | 120                   | 440       | 101,0 kg                          |
|                        | E 6-5 / E 6-6 | 200       | 63,5      | 85                    | 65                    | 220       | 14,0 kg                           |
|                        | E 6-7         | 220       | 63,5      | 85                    | 65                    | 220       | 16,0 kg                           |
|                        | E 6-8 / E 6-9 | 245       | 63,5      | 110                   | 75                    | 280       | 20,0 kg                           |
| CORDOALHA              | E 6-10        | 270       | 76,2      | 120                   | 85                    | 340       | 31,0 kg                           |
| Ø15,2mm<br>(ou Ø0,6")  | E 6-12        | 300       | 76,2      | 135                   | 95                    | 340       | 35,0 kg                           |
| (00 \$0,0 )            | E 6-15        | 340       | 88,9      | 150                   | 100                   | 435       | 48,0 kg                           |
|                        | E 6-19        | 370       | 101,6     | 150                   | 100                   | 435       | 70,0 kg                           |
|                        | E 6-22        | 400       | 101,6     | 170                   | 120                   | 435       | 101,0 kg                          |

Tabela 03: Características da ancoragem ativa tipo "E"


# TENCÃO!

- As dimensões indicadas estão em mm e são válidas para fck mínimo = 25 MPa.
- Tamanhos dos nichos e espaçamento das ancoragens devem obedecer ao estabelecido nas Tabelas 19 e 20 e no catálogo eletrônico da Rudloff (www.rudloff.com.br).
- A armadura de fretagem está indicada nas Tabelas 21 e 24.

## **ANCORAGEM ATIVA TIPO "B"**

É composta por uma peça principal de aço de formato tronco piramidal e cunhas tripartidas.

O bloco de ancoragem é colocado após a concretagem e apoia-se diretamente na superfície da estrutura. Esta deve ser plana e perpendicular à saída do cabo. Diferenças no ângulo de saída ou superfícies irregulares devem ser evitadas.



|            | DENOMINAÇÃO | A<br>(BLOCO) | B<br>(BLOCO) | C<br>(BLOCO) | D<br>(LUVA) | ØE EXTERNO<br>(LUVA) | PESO<br>APROXIMADO<br>DO CONJUNTO |
|------------|-------------|--------------|--------------|--------------|-------------|----------------------|-----------------------------------|
|            | B 5-2       | 44,5         | 110          | 100          | 300         | 70                   | 4,0                               |
| CORDOALHA  | B 5-3       | 44,5         | 130          | 110          | 300         | 70                   | 5,0                               |
| Ø12,7 mm   | B 5-4       | 44,5         | 155          | 115          | 300         | 70                   | 6,0                               |
| (ou Ø0,5") | B 5-6       | 44,5         | 182          | 145          | 300         | 85                   | 8,0                               |
|            | B 5-7       | 50,8         | 182          | 170          | 300         | 90                   | 8,0                               |
|            |             |              |              |              |             |                      |                                   |
| CORDOALHA  | B 6-2       | 44,5         | 130          | 110          | 300         | 70                   | 5,0                               |
| Ø15,2 mm   | B 6-3       | 50,8         | 155          | 115          | 300         | 70                   | 6,0                               |
| (ou Ø0,6") | В 6-4       | 50,8         | 194          | 135          | 300         | 90                   | 9,0                               |

Tabela 04: Características da ancoragem ativa tipo "B"

# TENCÃO!

- As dimensões indicadas estão em mm e são válidas para fck mínimo = 25 MPa.
- Tamanhos dos nichos e espaçamento das ancoragens devem obedecer ao estabelecido nas Tabelas 19 e 20 e no catálogo eletrônico da Rudloff (www.rudloff.com.br).
- A armadura de fretagem está indicada nas Tabelas 21 e 24.



## **ANCORAGEM ATIVA TIPO "EL"**

Tem formato achatado e destina-se à protensão de lajes, pisos, tabuleiros de pontes e outras estruturas delgadas. Os cabos, com até 4 cordoalhas de 12,7mm ou 15,2mm, são colocados em bainhas metálicas chatas (com exceção das bainhas para cabos monocordoalhas, que são redondas) e as cordoalhas são protendidas uma a uma.

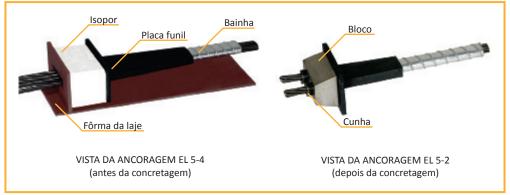



Imagem 18: Ancoragem ativa Rudloff tipo "EL", antes e depois da concretagem (VISTA DO CONJUNTO)

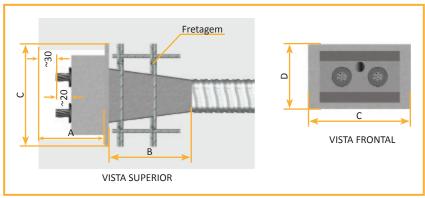



Imagem 19: Ancoragem ativa Rudloff tipo "EL" (VISTAS SUPERIOR E FRONTAL)

|                        | DENOMINAÇÃO | A (NICHO) | B (FUNIL) | C (PLACA) | D (PLACA) | PESO<br>APROXIMADO<br>DO CONJUNTO |
|------------------------|-------------|-----------|-----------|-----------|-----------|-----------------------------------|
| CORROALIJA             | EL 5-1      | 100       | 125       | 100       | 80        | 2,0 kg                            |
| ©12,7 mm<br>(ou Ø0,5") | EL 5-2      | 100       | 128       | 140       | 80        | 3,0 kg                            |
|                        | EL 5-3      | 100       | 290       | 200       | 110       | 4,0 kg                            |
| (00 90,5 )             | EL 5-4      | 100       | 300       | 210       | 110       | 6,0 kg                            |
|                        | EL 6-1      | 100       | 128       | 110       | 100       | 3,0 kg                            |
| CORDOALHA              | EL 6-2      | 100       | 150       | 155       | 110       | 5,0 kg                            |
| Ø15,2 mm<br>(ou Ø0,6") | EL 6-3      | 100       | 300       | 200       | 120       | 7,0 kg                            |
| (00 90,0 )             | EL 6-4      | 100       | 420       | 245       | 125       | 8,0 kg                            |

Tabela 05: Características da ancoragem ativa tipo "EL"

ATENÇÃO!

- As dimensões indicadas estão em mm e são válidas para fck mínimo = 25 MPa.
- A armadura de fretagem está indicada nas Tabelas 21 a 24.

## **ANCORAGEM ATIVA TIPO "AF"**

É a ancoragem usada para cabos engraxados de monocordoalha. É composta basicamente por um bloco de ferro fundido, uma luva, uma cunha bi-partida e a cordoalha engraxada e plastificada.

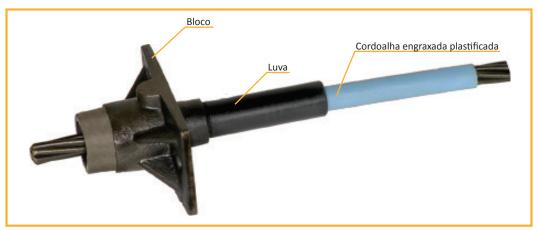



Imagem 20: Ancoragem ativa Rudloff tipo "AF" (VISTA DO CONJUNTO)

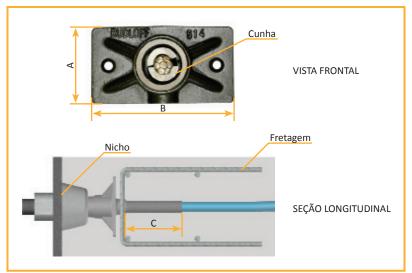



Imagem 21: Ancoragem ativa Rudloff tipo "AF" (VISTA FRONTAL E SEÇÃO LONGITUDINAL)

| CORDOALHA Ø12,7 mm (ou Ø0,5") |    |     |    |                                   | CORDOALHA Ø15,2 mm (ou Ø0,6") |    |     |    |                                   |
|-------------------------------|----|-----|----|-----------------------------------|-------------------------------|----|-----|----|-----------------------------------|
| DENOMINAÇÃO                   | Α  | В   | С  | PESO<br>APROXIMADO<br>DO CONJUNTO | DENOMINAÇÃO A                 |    | В   | С  | PESO<br>APROXIMADO<br>DO CONJUNTO |
| AF 5-1                        | 70 | 130 | 90 | 1,30 kg                           | AF 6-1                        | 70 | 130 | 90 | 1,30 kg                           |

Tabela 06: Características da ancoragem ativa tipo "AF"



- As dimensões indicadas estão em mm e são válidas para fck mínimo = 25 MPa.
- A armadura de fretagem está indicada nas Tabelas 21 a 24.



## **ANCORAGEM PASSIVA TIPO "U"**

É uma ancoragem fixa na qual a transferência da força de protensão para o concreto que envolve a ancoragem dáse por aderência ao longo das cordoalhas na parte descoberta (parte da cordoalha fora da bainha) e por tensões de compressão entre a placa de aço curvada (placa "U") e o concreto.

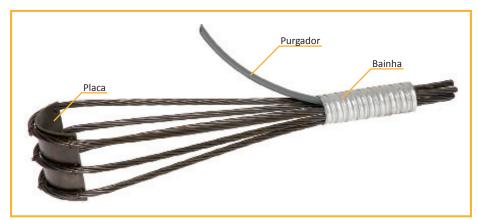



Imagem 22: Ancoragem passiva Rudloff tipo "U" (VISTA DO CONJUNTO)

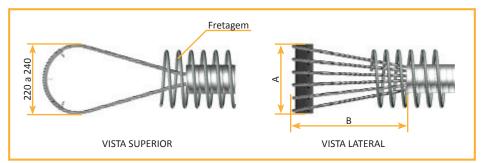



Imagem 23: Ancoragem passiva Rudloff tipo "U" (VISTA SUPERIOR E LATERAL)

| CORDO       | ALHA Ø12 | ,7 mm (ou | ı Ø0,5")                          | CORDOALHA Ø15,2 mm (ou Ø0,6")                           |     |      |                                   |  |  |  |  |
|-------------|----------|-----------|-----------------------------------|---------------------------------------------------------|-----|------|-----------------------------------|--|--|--|--|
| DENOMINAÇÃO | Α        | В         | PESO<br>APROXIMADO<br>DO CONJUNTO | DENOMINAÇÃO                                             | Α   | В    | PESO<br>APROXIMADO<br>DO CONJUNTO |  |  |  |  |
| U 5-2       | 38       | 600       | 0,4 kg                            | U 6-2                                                   | 38  | 600  | 0,4 kg                            |  |  |  |  |
| U 5-4       | 76       | 600       | 0,7 kg                            | U 6-4                                                   | 76  | 600  | 0,7 kg                            |  |  |  |  |
| U 5-6       | 140      | 600       | 1,3 kg                            | U 6-6                                                   | 140 | 700  | 1,3 kg                            |  |  |  |  |
| U 5-8       | 180      | 600       | 1,6 kg                            | U 6-8                                                   | 180 | 700  | 1,6 kg                            |  |  |  |  |
| U 5-10      | 220      | 700       | 2,1 kg                            | U 6-10                                                  | 220 | 800  | 2,1 kg                            |  |  |  |  |
| U 5-12      | 280      | 700       | 2,5 kg                            | U 6-12                                                  | 280 | 900  | 2,5 kg                            |  |  |  |  |
| U 5-19      | 390      | 800       | 3,5 kg                            | U 6-15                                                  | 280 | 1300 | 2,6 kg                            |  |  |  |  |
| U 5-22      | 428      | 900       | 3,8 kg                            | U 6-19                                                  | 390 | 1300 | 2,6 kg                            |  |  |  |  |
| U 5-27      | 542      | 1300      | 4,8 kg                            | U 6-22                                                  | 428 | 1400 | 3,8 kg                            |  |  |  |  |
| U 5-31      | 618      | 1300      | 5,4 kg                            | Tabela 07: Características da ancoragem passiva tipo "L |     |      |                                   |  |  |  |  |

ATENÇÃO!

- As dimensões indicadas estão em mm e são válidas para fck mínimo = 25 MPa.
- A armadura de fretagem está indicada nas Tabelas 21 a 24.

## **ANCORAGEM PASSIVA TIPO "H"**

É uma ancoragem fixa, na qual um equipamento especial faz o "desencordoamento" das pontas das cordoalhas. A transferência da força de protensão para o concreto que envolve a ancoragem dá-se por aderência ao longo das cordoalhas na parte descoberta e desencordoada.




Imagem 24: Ancoragem passiva Rudloff tipo "H" (VISTA DO CONJUNTO)

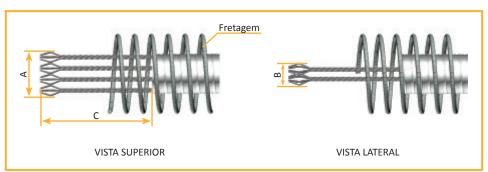



Imagem 25: Ancoragem passiva Rudloff tipo "H" (VISTA SUPERIOR E LATERAL)

| CORDO       | ALHA Ø12,7 | mm (ou Ø0,5 | 5")  | CORDO       | ALHA Ø15,2 : | mm (ou Ø0,6 | 5")  |
|-------------|------------|-------------|------|-------------|--------------|-------------|------|
| DENOMINAÇÃO | Α          | В           | С    | DENOMINAÇÃO | Α            | В           | С    |
| H 5-1       | 80         | -           | 800  | H 6-1       | 90           | -           | 800  |
| H 5-2       | 160        | -           | 800  | H 6-2       | 180          | -           | 800  |
| H 5-3       | 240        | -           | 800  | H 6-3       | 270          | -           | 800  |
| H 5-4       | 320        | -           | 800  | H 6-4       | 360          | -           | 800  |
| H 5-6       | 240        | 160         | 800  | H 6-5       | 270          | 180         | 800  |
| H 5-7       | 320        | 160         | 800  | H 6-6       | 270          | 180         | 800  |
| H 5-8       | 320        | 160         | 800  | H 6-7       | 360          | 180         | 800  |
| H 5-9       | 240        | 240         | 800  | H 6-9       | 270          | 270         | 900  |
| H 5-12      | 320        | 240         | 900  | H 6-10      | 360          | 270         | 900  |
| H 5-19      | 400        | 320         | 900  | H 6-12      | 360          | 270         | 1000 |
| H 5-22      | 400        | 400         | 1000 | H 6-15      | 360          | 360         | 1100 |
| H 5-27      | 400        | 480         | 1100 | H 6-19      | 450          | 360         | 1100 |
| H 5-31      | 400        | 480         | 1200 | H 6-22      | 450          | 450         | 1200 |

Tabela 08: Características da ancoragem passiva tipo "H"



- As dimensões indicadas estão em mm e são válidas para fck mínimo = 25 MPa.
- A armadura de fretagem está indicada nas Tabelas 21 a 24.



## **ANCORAGEM PASSIVA TIPO "PC"**

É semelhante a uma ancoragem ativa, com iguais dimensões e fretagens, porém, por motivos construtivos, as cordoalhas são pré-cravadas.

Este tipo de ancoragem substitui a ancoragem fixa tipo "U", quando se deseja uma transferência bem definida da força e protensão para o concreto.

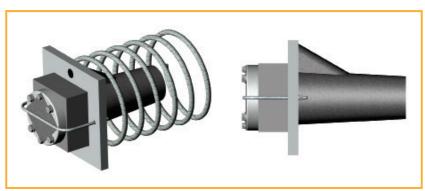



Imagem 26: Ancoragem passiva Rudloff tipo "PC" (VISTAS DO CONJUNTO MONTADO)

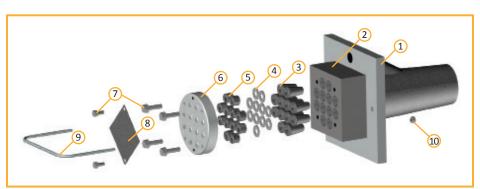



Imagem 27: Ancoragem passiva Rudloff tipo "PC" (VISTA DOS ELEMENTOS DO CONJUNTO)

| ITEM | ELEMENTO           | ITEM | ELEMENTO                                    |
|------|--------------------|------|---------------------------------------------|
| 1    | Placa e funil      | 6    | Tampa de aperto das cunhas                  |
| 2    | Bloco de ancoragem | 7    | Parafusos de fixação das tampas "6" e "8"   |
| 3    | Cunhas             | 8    | Tampa de vedação das cordoalhas             |
| 4    | Arruelas de metal  | 9    | Abraçadeira (fixação na placa de ancoragem) |
| 5    | Calços de borracha | 10   | Porca de fixação da abraçadeira             |

Tabela 09: Características da ancoragem passiva tipo "PC"



- IMPORTANTE: Após a montagem do conjunto, antes da concretagem, vedar bem os locais onde possa penetrar nata de cimento, com "Durepox".
- A armadura de fretagem está indicada nas Tabelas 21 a 24.

## **ANCORAGEM DE EMENDA TIPO "K"**

Trata-se de uma combinação de ancoragem ativa e passiva. Permite a continuação de um cabo a partir de um ponto de protensão intermediária. O primeiro trecho do cabo terá, numa extremidade, uma ancoragem ativa ou passiva e, na outra extremidade, a ancoragem tipo "K", que funcionará, nesta primeira fase, como uma ancoragem ativa do tipo "E". O acoplamento do segundo trecho do cabo na ancoragem tipo "K" é feito mediante buchas de compressão.



Imagem 28: Ancoragem de emenda Rudloff tipo "K" (VISTAS DO CONJUNTO ABERTO E FECHADO)

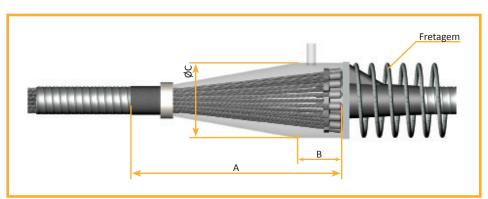



Imagem 29: Ancoragem de emenda Rudloff tipo "K" (SEÇÃO TRANSVERSAL)

| CORDO       | ALHA Ø12,7 | mm (ou Ø0,5 | i") | CORDOALHA Ø15,2 mm (ou Ø0,6") |     |     |     |  |  |
|-------------|------------|-------------|-----|-------------------------------|-----|-----|-----|--|--|
| DENOMINAÇÃO | А          | В           | øс  | DENOMINAÇÃO                   | А   | В   | ØС  |  |  |
| K 5-3       | 430        | 140         | 130 | K 6-2                         | 380 | 150 | 130 |  |  |
| K 5-7       | 550        | 140         | 170 | K 6-4                         | 520 | 160 | 160 |  |  |
| K 5-12      | 650        | 140         | 200 | K 6-7                         | 630 | 160 | 190 |  |  |
| K 5-19      | 740        | 140         | 240 | K 6-12                        | 730 | 160 | 240 |  |  |
| K 5-22      | 830        | 140         | 260 | K 6-19                        | 860 | 160 | 280 |  |  |
| K 5-31      | 1140       | 140         | 350 | K 6-22                        | 930 | 160 | 310 |  |  |

Tabela 10: Características da ancoragem de emenda tipo "K"



- As dimensões indicadas estão em mm e são válidas para fck mínimo = 25 MPa.
- A armadura de fretagem está indicada nas Tabelas 21 a 24.



## **ANCORAGEM DE EMENDA TIPO "UK"**

Tem a mesma finalidade de ancoragem tipo "K", com a diferença que na continuidade do cabo funciona como ancoragem passiva tipo "U". É normalmente utilizada em lajes.

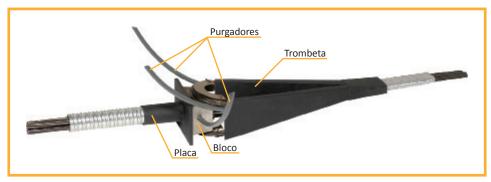



Imagem 30: Ancoragem de emenda Rudloff tipo "UK" (VISTA DO CONJUNTO)

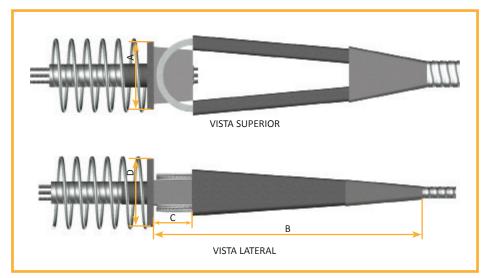



Imagem 31: Ancoragem de emenda Rudloff tipo "UK" (VISTAS SUPERIOR E LATERAL)

| CORDO       |     | CORDO | ALHA Ø15 | 5,2 mm (o | u <b>Ø0,</b> 6")    |     |     |    |     |
|-------------|-----|-------|----------|-----------|---------------------|-----|-----|----|-----|
| DENOMINAÇÃO | Α   | В     | С        | D         | DENOMINAÇÃO A B C D |     |     |    | D   |
| UK 5-2      | 150 | 660   | 63       | 100       | UK 6-2              | 155 | 660 | 75 | 100 |
| UK 5-4      | 200 | 660   | 63       | 140       | UK 6-4              | 220 | 660 | 75 | 150 |

Tabela 11: Características da ancoragem de emenda tipo "UK"

ATENÇÃO!

- As dimensões indicadas estão em mm e são válidas para fck mínimo = 25 MPa.
- A armadura de fretagem está indicada nas Tabelas 21 a 24.

## **ANCORAGEM INTERMEDIÁRIA TIPO "Z"**

É usada quando as extremidades de um cabo são inacessíveis para a protensão.

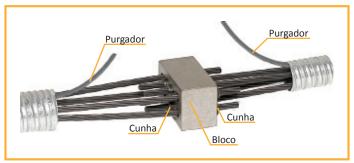



Imagem 32: Ancoragem intermediária Rudloff tipo "Z" (VISTA DO CONJUNTO)

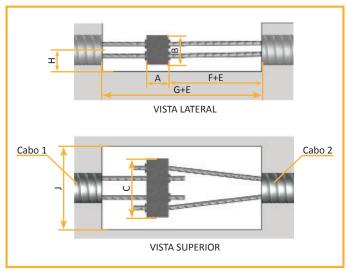



Imagem 33: Ancoragem intermediária Rudloff tipo "Z" (VISTAS LATERAL E SUPERIOR)

|                                     | DENOMINAÇÃO | Α   | В   | С   | E            | F    | G    | Н   | J   | PESO<br>APROXIMADO<br>DO CONJUNTO |
|-------------------------------------|-------------|-----|-----|-----|--------------|------|------|-----|-----|-----------------------------------|
| ¥ E €                               | Z 5-2       | 60  | 80  | 130 | $\Delta L_2$ | 600  | 820  | 60  | 170 | 5,0 kg                            |
| СОКВОАLНА<br>Ø12,7 mm<br>(ou Ø0,5") | Z 5-4       | 70  | 90  | 160 | $\Delta L_2$ | 600  | 820  | 65  | 200 | 8,0 kg                            |
| 12,7<br>u Ø                         | Z 5-6       | 90  | 130 | 200 | $\Delta L_2$ | 700  | 990  | 85  | 240 | 19,0 kg                           |
| 800                                 | Z 5-12      | 140 | 140 | 280 | $\Delta L_2$ | 700  | 1210 | 90  | 320 | 43,0 kg                           |
| ₹ E €                               | Z 6-2       | 70  | 90  | 140 | $\Delta L_2$ | 650  | 820  | 65  | 180 | 7,0 kg                            |
| 0ОАLНА<br>,2 mm<br>Ø0,6")           | Z 6-4       | 80  | 100 | 170 | $\Delta L_2$ | 900  | 1180 | 70  | 210 | 11,0 kg                           |
| CORDC<br>Ø15,3<br>(ou Ø             | Z 6-6       | 100 | 140 | 210 | $\Delta L_2$ | 1000 | 1400 | 90  | 250 | 23,0 kg                           |
| 080                                 | Z 6-12      | 160 | 160 | 300 | $\Delta L_2$ | 1350 | 1960 | 100 | 340 | 60,0 kg                           |

Tabela 12: Características da ancoragem intermediária tipo "Z"

#### ATENÇÃO!

- As dimensões indicadas estão em mm e são válidas para fck mínimo = 25 MPa.
- A armadura de fretagem está indicada nas Tabelas 21 e 24.
- ΔL<sub>2</sub> = alongamento do Cabo2.
- As dimensões são válidas para superfícies retas.



## COMO É O PROCESSO DE PROTENSÃO

A operação de protensão é aplicada através de macacos hidráulicos e bombas de alta pressão. Normalmente, é composta pelas etapas de preparação, colocação do equipamento, protensão das cordoalhas, cravação e acabamento.

#### **ETAPAS DA OPERAÇÃO DE PROTENSÃO**

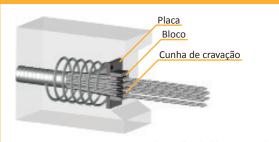



Imagem 34: Colocação de bloco e cunhas

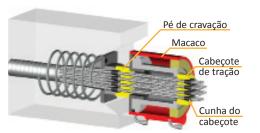



Imagem 35: Posicionamento do macaco de protensão

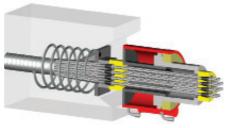



Imagem 36: Tracionamento das cordoalhas

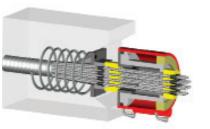



Imagem 37: Cravação das cunhas

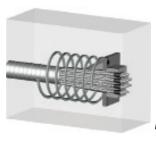



Imagem 38: Corte das pontas das cordoalhas e fechamento dos nichos

#### **PREPARAÇÃO**

As formas dos nichos devem ser retiradas, seguidas de limpeza, quando necessária, da área de apoio do bloco de ancoragem. Em seguida, deve ser feita a colocação do bloco e das cunhas, conforme a figura 34. Após o concreto atingir a resistência mínima indicada em projeto estrutural, deve ser providenciado o posicionamento do macaco hidráulico e dos seus acessórios, ilustrado na figura 35.

#### **PROTENSÃO**

A operação de protensão é realizada pelo acionamento do macaco, conforme a figura 36, através da bomba de alta pressão. As cordoalhas são tracionadas obedecendo à força indicada no projeto estrutural. Deve-se registrar a pressão indicada no manômetro e o correspondente alongamento dos cabos.

#### **ANCORAGEM/CRAVAÇÃO**

Quando o macaco atingir carga e/ou alongamento indicados no projeto estrutural, finaliza-se a protensão. A pressão no macaco é aliviada e as cordoalhas se ancoram automaticamente no bloco, conforme a figura 37. Em seguida, é feita a remoção do equipamento de protensão.

#### **ACABAMENTO**

Após a liberação da protensão, é feito o corte das pontas das cordoalhas, conforme a figura 38. Em seguida, deve-se providenciar o fechamento dos nichos e, no caso de protensão com aderência, a injeção dos cabos com nata de cimento.

## COMO É O EQUIPAMENTO RUDLOFF?

|           |        |                                |         | M                                 | ACACOS                      | RUDLOF          | F DE PRO                                     | TENSÃO                 |                            |                       |                                                  |        |        |
|-----------|--------|--------------------------------|---------|-----------------------------------|-----------------------------|-----------------|----------------------------------------------|------------------------|----------------------------|-----------------------|--------------------------------------------------|--------|--------|
| NOME      | PROTEI | NIDADE I<br>NSÃO (NI<br>ORDOAL | ÚMERO   | ÁREA DO PISTÃO<br>DE TENSÃO (cm²) | PESO COM<br>ACESSÓRIOS (kg) | CURSO ÚTIL (mm) | COMP. FECHADO<br>(COM PÉ E<br>CABEÇOTE) (mm) | MAIOR DIÂMETRO<br>(mm) | COMP. MÍN.<br>DE PEGA (mm) | ESFORÇO<br>MÁXIMO (Ħ) | PRESSÃO MÁX.<br>ADM. COM PERDA<br>2,5% (kgf/cm²) | A (cm) | B (cm) |
| Ø 8mi     |        | Ø 1/2"                         | Ø 5/8"  | ÁREA<br>DE TEN                    | PESO (<br>ACESSÓR           | CURSO           | COMP<br>(CC<br>CABEÇ                         | MAIOR<br>(             | CON<br>DE PE               | ES<br>MÁ)             | PRESS<br>ADM. C<br>2,5%                          |        |        |
| MONO-I-A  | -      | 1                              | 1       | 41,92                             | 27                          | 250             | 530                                          | 120                    | 630                        | 25                    | 611                                              | 9      | 90     |
| MONO-I-C  | -      | 1                              | 1       | 41,92                             | 25                          | 200             | 470                                          | 120                    | 570                        | 25                    | 611                                              | 9      | 90     |
| MONO-VI   | -      | 1-E                            | -       | 40,52                             | 19                          | 230             | 350                                          | 191                    | 360                        | 18                    | 455                                              | 11     | 90     |
| MONO-VII  | -      | 1-E                            | 1-E     | 56,55                             | 30                          | 190             | 450                                          | 252                    | 460                        | 25                    | 453                                              | 14     | 90     |
| MP 5-4A   | -      | 2 a 4                          | 2 e 3   | 126,40                            | 69                          | 250             | 590                                          | 200                    | 690                        | 63                    | 511                                              | 12     | 110    |
| MP 5-4B   | -      | 2 a 4                          | 2 e 3   | 126,40                            | 75                          | 250             | 550                                          | 200                    | 650                        | 63                    | 511                                              | 12     | 110    |
| MP-110    | 12     | 4 a 7                          | 4 a 6   | 221,80                            | 110                         | 190             | 540                                          | 250                    | 640                        | 115                   | 531                                              | 15     | 120    |
| MP 5-7-A  | 12     | 4 a 7                          | 4 a 6   | 198,56                            | 133                         | 250             | 600                                          | 240                    | 700                        | 115                   | 594                                              | 15     | 120    |
| MP 5-7-B  | 12     | 4 a 7                          | 4 a 6   | 198,56                            | 103                         | 150             | 470                                          | 240                    | 570                        | 115                   | 594                                              | 15     | 120    |
| MP 5-7-C  | 12     | 4 a 7                          | 4 a 6   | 198,56                            | 96                          | 150             | 430                                          | 240                    | 530                        | 115                   | 594                                              | 15     | 120    |
| MP 5-12-A | -      | 8 a 12                         | 7 a 9   | 355,30                            | 237                         | 280             | 640                                          | 330                    | 740                        | 190                   | 548                                              | 18     | 120    |
| MP 5-12-B | -      | 8 a 12                         | 7 a 9   | 355,30                            | 210                         | 190             | 530                                          | 330                    | 630                        | 190                   | 548                                              | 18     | 120    |
| MP 5-12-C | -      | 8 a 12                         | 7 a 9   | 355,30                            | 224                         | 240             | 560                                          | 330                    | 660                        | 190                   | 548                                              | 18     | 120    |
| MP 5-12-D | -      | 8 a 12                         | 7 a 9   | 355,30                            | 163                         | 100             | 440                                          | 330                    | 540                        | 190                   | 548                                              | 18     | 120    |
| MP 5-22   | -      | 13 a 22                        | 10 a 15 | 651,39                            | 410                         | 190             | 580                                          | 430                    | 800                        | 350                   | 551                                              | 27     | 150    |
| MP 5-31   | -      | 23 a 31                        | 16 a 22 | 837,13                            | 540                         | 190             | 600                                          | 490                    | 800                        | 480                   | 588                                              | 27     | 150    |

#### ESPAÇO MÍNIMO PARA O EQUIPAMENTO DE PROTENSÃO

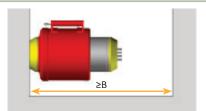



Imagem 39: Representação do macaco posicionado na estrutura -VISTA LATERAL

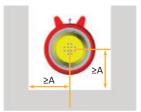



Imagem 40: Representação do macaco posicionado na estrutura - VISTA FRONTAL

Tabela 13: Características dos macacos Rudloff de protensão

|        | BOMBAS RUDLOFF DE PROTENSÃO |        |                                   |                               |                         |  |  |  |  |  |  |  |  |
|--------|-----------------------------|--------|-----------------------------------|-------------------------------|-------------------------|--|--|--|--|--|--|--|--|
| NOME   | DIMENSÕES<br>(mm)           | PESO   | MOTOR                             | ÓLEO                          | PRESSÃO<br>MÁXIMA (bar) |  |  |  |  |  |  |  |  |
|        | Comprimento: 880            |        | Triffeine F CV                    | 11:-l-4:-l: C0/22             |                         |  |  |  |  |  |  |  |  |
| BEP 01 | Altura: 800                 | 190 kg | Trifásico - 5 CV<br>220 V / 380 V | Hidráulico 68/32<br>40 Litros | 700                     |  |  |  |  |  |  |  |  |
|        | Largura: 550                |        | 220 V / 360 V                     | 40 LILIOS                     |                         |  |  |  |  |  |  |  |  |
|        | Comprimento: 560            |        | Tuiféaine F CV                    | Hidráulico 68/32              |                         |  |  |  |  |  |  |  |  |
| BEP 03 | Altura: 650                 | 125 kg | Trifásico - 5 CV<br>220 V / 380 V | 30 Litros                     | 700                     |  |  |  |  |  |  |  |  |
|        | Largura: 530                |        | 220 V / 360 V                     | 30 211103                     |                         |  |  |  |  |  |  |  |  |

Tabela 14: Características das bombas Rudloff de protensão



## COMO É O PROCESSO DE INJEÇÃO

A injeção de nata de cimento nas bainhas visa assegurar a aderência mecânica entre as armaduras de protensão e o concreto em todo o comprimento do cabo e a proteção das cordoalhas contra a corrosão. Para sua perfeita execução, recomenda-se:

- Obedecer as normas técnicas NBR 6118, 7681, 7682, 7683, 7684, 7685 e 14931.
- Estudar o melhor local para a instalação dos equipamentos de injeção antes de iniciá-la visando evitar deslocamento durante a operação ou mangueiras de comprimento excessivo.
- Injetar os cabos em até quinze dias após a sua protensão.
- Seguir a composição de nata de cimento definida em ensaios prévios, com a proporção correta entre água potável, cimento e aditivos.
- Controlar as propriedades da nata durante a injeção.
- Evitar executar a injeção com chuva ou sol forte. O ideal é fazê-lo pela manhã, aproveitando a queda de temperatura do concreto ocorrida durante a noite.
- Se houver necessidade de execução da injeção com temperaturas ambientes acima de 30 °C ou abaixo de 5 °C, aplicar técnicas especiais, fornecidas pela Rudloff.
- Lavar os cabos pouco tempo antes da injeção, com água limpa, preferencialmente removendo a água com ar comprimido.
- Executar a injeção a partir da extremidade mais baixa do cabo.
- Lavar o equipamento com água ao final de cada operação ou a cada 3 horas.

ATENÇÃO!

A injeção de nata de cimento nas bainhas é fundamental para o funcionamento da protensão com aderência. Dada a sua importância, a operação de injeção deve ser feita por pessoal qualificado, sob orientação de técnico especializado, seguindo as recomendações estabelecidas em normas técnicas.

#### O EQUIPAMENTO PARA INJEÇÃO

O equipamento Rudloff para a injeção possibilita a execução segura da operação, conforme as normas técnicas brasileiras. Porém, a injeção é um serviço de alta responsabilidade não somente do equipamento, mas também de seus operadores e pessoal de apoio. O sucesso da operação de injeção depende da eficiência de quem a executa.

|                           | O EQUIPAMENTO RUDLOFF PARA INJEÇÃO                                                                                                                                                                            |
|---------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| BOMBA INJETORA<br>RUDLOFF | Peso: 266 kg Dimensões: 117x66x70cm Pressão máxima de trabalho: 20 kg/cm² Potência do motor elétrico: 3 CV Voltagem do motor elétrico: 220V ou 380V Corrente elétrica do motor: 10,8 A (220V) ou 6,2 A (380V) |
| MISTURADOR<br>RUDLOFF     | Peso vazio: 124 kg<br>Motor elétrico: 2 CV, 1150 rpm<br>Capacidade de cimento: 2 sacos de 50 kg<br>Capacidade de água potável: 42 litros                                                                      |
| COLETOR<br>RUDLOFF        | Peso: 113 kg<br>Diâmetro: 80 cm + 52 cm<br>Altura total: 70 cm                                                                                                                                                |

Tabela 15: O equipamento Rudloff para injeção



Imagem 41: O equipamento Rudloff para injeção

## COMO É O PROCESSO DE INJEÇÃO

|                          | INJ                                    | EÇÃO DE                           | NATA D                           | E CIMEN                                | ТО                                |                                  |  |
|--------------------------|----------------------------------------|-----------------------------------|----------------------------------|----------------------------------------|-----------------------------------|----------------------------------|--|
|                          | CORDO                                  | ALHA Ø17<br>ou Ø0,5"              | 2,7 mm                           | CORDO                                  | ALHA Ø1<br>ou Ø0,6"               |                                  |  |
| N° DE<br>CORDO-<br>ALHAS | Ø<br>INTER-<br>NO DA<br>BAINHA<br>(mm) | PESO<br>DE CI-<br>MENTO<br>(kg/m) | VOLU-<br>ME DE<br>CALDA<br>(I/m) | Ø<br>INTER-<br>NO DA<br>BAINHA<br>(mm) | PESO<br>DE CI-<br>MENTO<br>(kg/m) | VOLU-<br>ME DE<br>CALDA<br>(I/m) |  |
| 1                        | 22                                     | 0,42                              | 0,31                             | 28                                     | 0,72                              | 0,52                             |  |
| 2                        | 33                                     | 0,99                              | 0,72                             | 37                                     | 1,20                              | 0,87                             |  |
| 2 (lajes)                | 19x35                                  | 0,63                              | 0,46                             | 24x40                                  | 0,87                              | 0,63                             |  |
| 3                        | 40                                     | 1,45                              | 1,05                             | 45                                     | 1,76                              | 1,28                             |  |
| 3 (lajes)                | 22x69                                  | 2,06                              | 1,50                             | 27x57                                  | 1,48                              | 1,07                             |  |
| 4                        | 45                                     | 1,80                              | 1,31                             | 50                                     | 2,11                              | 1,53                             |  |
| 4 (lajes)                | 22x69                                  | 1,91                              | 1,38                             | 30x70                                  | 2,35                              | 1,71                             |  |
| 5                        | 45                                     | 1,65                              | 1,19                             | 50                                     | 1,89                              | 1,37                             |  |
| 6                        | 50                                     | 2,06                              | 1,49                             | 60                                     | 2,99                              | 2,16                             |  |
| 7                        | 55                                     | 2,53                              | 1,84                             | 60                                     | 2,77                              | 2,01                             |  |
| 8                        | 60                                     | 3,07                              | 2,22                             | 65                                     | 3,30                              | 2,39                             |  |
| 9                        | 60                                     | 2,91                              | 2,11                             | 70                                     | 3,88                              | 2,81                             |  |
| 10                       | 60                                     | 2,76                              | 2,00                             | 75                                     | 4,53                              | 3,28                             |  |
| 11                       | 65                                     | 3,35                              | 2,43                             | 75                                     | 4,31                              | 3,12                             |  |
| 12                       | 65                                     | 3,20                              | 2,32                             | 80                                     | 5,02                              | 3,64                             |  |
| 13                       | 65                                     | 3,05                              | 2,21                             | 85                                     | 5,78                              | 4,19                             |  |
| 14                       | 70                                     | 3,70                              | 2,68                             | 85                                     | 5,57                              | 4,03                             |  |
| 15                       | 70                                     | 3,54                              | 2,57                             | 85                                     | 5,35                              | 3,88                             |  |
| 16                       | 75                                     | 4,26                              | 3,08                             | 90                                     | 6,17                              | 4,47                             |  |
| 17                       | 75                                     | 4,10                              | 2,97                             | 90                                     | 5,96                              | 4,32                             |  |
| 18                       | 80                                     | 4,87                              | 3,53                             | 95                                     | 6,84                              | 4,96                             |  |
| 19                       | 85                                     | 5,70                              | 4,13                             | 95                                     | 6,62                              | 4,80                             |  |
| 20                       | 85                                     | 5,55                              | 4,02                             | 100                                    | 7,57                              | 5,48                             |  |
| 21                       | 85                                     | 5,40                              | 3,91                             | 105                                    | 8,57                              | 6,21                             |  |
| 22                       | 90                                     | 6,29                              | 4,56                             | 110                                    | 9,64                              | 6,98                             |  |
| 23                       | 90                                     | 6,13                              | 4,45                             | 110                                    | 9,42                              | 6,83                             |  |
| 24                       | 90                                     | 5,98                              | 4,33                             | 110                                    | 9,20                              | 6,67                             |  |
| 25                       | 90                                     | 5,83                              | 4,22                             | 110                                    | 8,98                              | 6,51                             |  |
| 26                       | 95                                     | 6,78                              | 4,91                             | 115                                    | 10,11                             | 7,32                             |  |
| 27                       | 95                                     | 6,62                              | 4,80                             | 115                                    | 9,89                              | 7,17                             |  |
| 28                       | 95                                     | 6,47                              | 4,69                             | 120                                    | 11,07                             | 8,02                             |  |
| 29                       | 100                                    | 7,48                              | 5,42                             | 120                                    | 10,86                             | 7,87                             |  |
| 30                       | 105                                    | 8,55                              | 6,20                             | 130                                    | 13,62                             | 9,87                             |  |
| 31                       | 105                                    | 8,40                              | 6,08                             | 130                                    | 13,40                             | 9,71                             |  |

Tabela 16: Recomendações para a injeção de nata de cimento

#### **COMPOSIÇÃO DA NATA DE CIMENTO**

As características da calda de injeção variam ligeiramente com as diversas marcas de cimento e tipos de aditivos. Em média, para uma relação águacimento aproximadamente 0,42, pode-se dizer que:

- 100kg de cimento (2 sacos) e 42 litros de água produzem aproximadamente 73 litros de calda;
- 1 litro de calda tem aproximadamente 0,57 litros de água e 1,38 kg de cimento;
- Densidade da calda = aproximadamente 1,9 kg/litro.

Os valores da tabela 16 são de utilidade para se planejar uma operação de injeção. Não foram consideradas as perdas nos respiros das bainhas, nas lavagens dos cabos e na expulsão da água do interior do cabo.

#### **RECOMENDAÇÕES**

- 1. A Rudloff recomenda que se aumente em pelo menos 10% o peso teórico de cimento indicado na Tabela 16.
- 2. A nata de injeção deve atender aos requisitos estabelecidos nas normas técnicas quanto a:
- Fluidez
- Exsudação
- Expansão
- Resistência mecânica
- Retração
- Absorção capilar
- Tempo de pega
- Tempo de injetabilidade
- Dosagem de aditivos
- Ausência de agentes agressivos



#### **ESCOLHA DO CABO**

A Tabela 18 possibilita a escolha do cabo a ser usado em projeto. Foi desenvolvida para armadura pós-tracionada e aços da classe de relaxação baixa e indica a força máxima permitida no macaco pela norma, no momento da protensão, para cada cabo. Para os casos de armaduras pré-tracionadas, deve ser consultado o critério estabelecido na NBR6118. A escolha do cabo deve ser feita respeitando-se o espaçamento mínimo necessário ao equipamento de protensão, conforme indicado na Tabela 13.

#### PERDA DE CRAVAÇÃO NAS ANCORAGENS E SUA COMPENSAÇÃO

A acomodação das cunhas nas ancoragens (cravação) provoca uma perda de aproximadamente 6 mm no alongamento inicial ao qual se chegou antes da cravação.

Em cabos muito curtos, com menos de 10m de comprimento e uma ancoragem ativa tipo "E", pode-se compensar a perda de cravação através da colocação de calços de aço de aproximadamente 6 mm.

#### **COEFICIENTE DE ATRITO**

As perdas de protensão por atrito ao longo do cabo são calculadas em função da curvatura do cabo e dos seguintes coeficientes, que dependem das características dos materiais empregados:

- μ = coeficiente de atrito aparente entre cabo e bainha;
- k = coeficiente de perda por metro provocada por curvaturas não intencionais no cabo.

Na falta de dados experimentais, podem ser adotados os valores da tabela abaixo.

| COEFICIENTES*                                                   | μ<br>(1/RADIANOS) | K<br>(1/m)              |
|-----------------------------------------------------------------|-------------------|-------------------------|
| Entre barras com saliências e<br>bainha metálica                | 0,30              | 3,0x10-³/m              |
| Entre fios lisos ou cordoalhas<br>e bainha metálica             | 0,20              | 2,0x10-³/m              |
| Entre fios lisos ou cordoalhas<br>e bainha metálica lubrificada | 0,10              | 1,0x10- <sup>3</sup> /m |
| Entre cordoalha e bainha de<br>polipropileno lubrificada        | 0,05              | 0,5x10-³/m              |
| *Conforme NBR6118:2003                                          |                   |                         |

Tabela 17: Coeficientes médios de atrito

#### **NICHOS DE PROTENSÃO**

Por razões construtivas ou estéticas, normalmente é interessante que as ancoragens ativas fiquem reentrantes à superfície acabada do concreto. Para o acesso a elas, durante a aplicação da protensão, torna-se então necessário que se preveja, no projeto estrutural, a execução de nichos nos elementos de concreto (ver Tabelas 19 e 20).

Após a protensão, os nichos são fechados, formando-se assim uma superfície plana que protege ancoragens e cordoalhas contra a corrosão.

#### **FENDILHAMENTO E FRETAGEM**

O concreto quando protendido é solicitado por tensões elevadas nas imediações das ancoragens, que provocam altos esforços de fendilhamento concentrados nestas regiões. É fundamental a existência de armação que combata estes esforços, assim como de armaduras de fretagem para distribuí-los. Cabe ao calculista da estrutura especificar estas armaduras no projeto estrutural, obedecendo critérios seguros de cálculo.

Para a armadura de fretagem, a Rudloff recomenda que sejam seguidas as especificações das Tabelas 21 a 24. Para a armadura de fendilhamento, pode-se adotar a seguinte sugestão genérica:

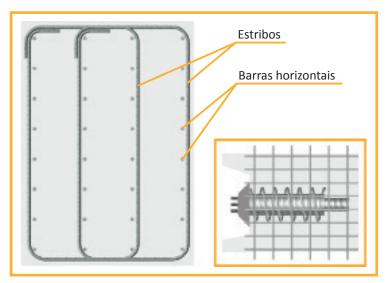



Imagem 42: Seção transversal de armadura de fendilhamento. No detalhe, seção longitudinal da mesma armadura.



|                 | CARAC   | TERÍSTICA         | AS DOS CAB           | OS DE PRO           | TENSÃO AD             | ERENTES,        | PARA AÇ | O CP190R          | B PÓS-TRAC           | CIONADO             |                       |
|-----------------|---------|-------------------|----------------------|---------------------|-----------------------|-----------------|---------|-------------------|----------------------|---------------------|-----------------------|
|                 | CORD    | OALHA Ø           | 12,7 mm (o           | u Ø0,5")            |                       |                 | CORE    | OALHA Ø           | 15,2 mm (o           | u Ø0,6")            |                       |
| N° DE           | DENOMI- | PESO <sup>1</sup> | FORÇA DE             | BAINH               | 4 (mm)                | N° DE           | DENOMI- | PESO <sup>1</sup> | FORÇA DE             | BAINH               | 4 (mm)                |
| CORDO-<br>ALHAS | NAÇÃO   | (kgf/m)           | PROTEN-<br>SÃO² (kN) | CABOS<br>FABRICADOS | CABOS PÓS<br>ENFIADOS | CORDO-<br>ALHAS | NAÇÃO   | (kgf/m)           | PROTEN-<br>SÃO² (kN) | CABOS<br>FABRICADOS | CABOS PÓS<br>ENFIADOS |
| 1               | 5-1     | 0,792             | 138,3                | 22                  | 28                    | 1               | 6-1     | 1,126             | 196,1                | 28                  | 33                    |
| 2               | 5-2     | 1,584             | 276,5                | 33                  | 37                    | 2               | 6-2     | 2,252             | 392,3                | 37                  | 45                    |
| 2 (lajes)       | L 5-2   | 1,584             | 276,5                | 19X35               | -                     | 2 (lajes)       | L 6-2   | 2,252             | 392,3                | 24X40               | -                     |
| 3               | 5-3     | 2,376             | 414,8                | 40                  | 45                    | 3               | 6-3     | 3,378             | 588,4                | 45                  | 50                    |
| 3 (lajes)       | L 5-3   | 2,376             | 414,8                | 22X69               | -                     | 3 (lajes)       | L 6-3   | 3,378             | 588,4                | 27X57               | -                     |
| 4               | 5-4     | 3,168             | 553,0                | 45                  | 50                    | 4               | 6-4     | 4,504             | 784,6                | 50                  | 55                    |
| 4 (lajes)       | L 5-4   | 3,168             | 553,0                | 22X69               | -                     | 4 (lajes)       | L 6-4   | 4,504             | 784,6                | 30X70               | -                     |
| 5               | 5-5     | 3,960             | 691,3                | 45                  | 50                    | 5               | 6-5     | 5,63              | 980,7                | 50                  | 55                    |
| 6               | 5-6     | 4,752             | 829,5                | 50                  | 55                    | 6               | 6-6     | 6,756             | 1176,9               | 60                  | 65                    |
| 7               | 5-7     | 5,544             | 967,8                | 55                  | 60                    | 7               | 6-7     | 7,882             | 1373,0               | 60                  | 65                    |
| 8               | 5-8     | 6,336             | 1106,0               | 60                  | 65                    | 8               | 6-8     | 9,008             | 1569,2               | 65                  | 70                    |
| 9               | 5-9     | 7,128             | 1244,3               | 60                  | 65                    | 9               | 6-9     | 10,134            | 1765,3               | 70                  | 75                    |
| 10              | 5-10    | 7,920             | 1382,5               | 60                  | 65                    | 10              | 6-10    | 11,26             | 1961,4               | 75                  | 80                    |
| 11              | 5-11    | 8,712             | 1520,8               | 65                  | 70                    | 11              | 6-11    | 12,386            | 2157,6               | 75                  | 80                    |
| 12              | 5-12    | 9,504             | 1659,0               | 65                  | 70                    | 12              | 6-12    | 13,512            | 2353,7               | 80                  | 85                    |
| 13              | 5-13    | 10,296            | 1797,3               | 65                  | 70                    | 13              | 6-13    | 14,638            | 2549,9               | 85                  | 90                    |
| 14              | 5-14    | 11,088            | 1935,5               | 70                  | 75                    | 14              | 6-14    | 15,764            | 2746,0               | 85                  | 90                    |
| 15              | 5-15    | 11,880            | 2073,8               | 70                  | 75                    | 15              | 6-15    | 16,89             | 2942,2               | 85                  | 90                    |
| 16              | 5-16    | 12,672            | 2212,0               | 75                  | 80                    | 16              | 6-16    | 18,016            | 3138,3               | 90                  | 95                    |
| 17              | 5-17    | 13,464            | 2350,3               | 75                  | 80                    | 17              | 6-17    | 19,142            | 3334,4               | 90                  | 95                    |
| 18              | 5-18    | 14,256            | 2488,5               | 80                  | 85                    | 18              | 6-18    | 20,268            | 3530,6               | 95                  | 105                   |
| 19              | 5-19    | 15,048            | 2626,8               | 85                  | 90                    | 19              | 6-19    | 21,394            | 3726,7               | 95                  | 105                   |
| 20              | 5-20    | 15,840            | 2765,0               | 85                  | 90                    | 20              | 6-20    | 22,52             | 3922,9               | 100                 | 110                   |
| 21              | 5-21    | 16,632            | 2903,3               | 85                  | 90                    | 21              | 6-21    | 23,646            | 4119,0               | 105                 | 115                   |
| 22              | 5-22    | 17,424            | 3041,5               | 90                  | 95                    | 22              | 6-22    | 24,772            | 4315,2               | 110                 | 120                   |
| 23              | 5-23    | 18,216            | 3179,8               | 90                  | 95                    | 23              | 6-23    | 25,898            | 4511,3               | 110                 | 120                   |
| 24              | 5-24    | 19,008            | 3318,0               | 90                  | 95                    | 24              | 6-24    | 27,024            | 4707,5               | 110                 | 120                   |
| 25              | 5-25    | 19,800            | 3456,3               | 90                  | 100                   | 25              | 6-25    | 28,15             | 4903,6               | 110                 | 120                   |
| 26              | 5-26    | 20,592            | 3594,6               | 95                  | 105                   | 26              | 6-26    | 29,276            | 5099,7               | 115                 | 130                   |
| 27              | 5-27    | 21,384            | 3732,8               | 95                  | 105                   | 27              | 6-27    | 30,402            | 5295,9               | 115                 | 130                   |
| 28              | 5-28    | 22,176            | 3871,1               | 95                  | 105                   | 28              | 6-28    | 31,528            | 5492,0               | 120                 | 135                   |
| 29              | 5-29    | 22,968            | 4009,3               | 100                 | 110                   | 29              | 6-29    | 32,654            | 5688,2               | 120                 | 135                   |
| 30              | 5-30    | 23,760            | 4147,6               | 105                 | 115                   | 30              | 6-30    | 33,78             | 5884,3               | 130                 | 145                   |
| 31              | 5-31    | 24,552            | 4285,8               | 105                 | 115                   | 31              | 6-31    | 34,906            | 6080,5               | 130                 | 145                   |

Tabela 18: Características dos cabos de protensão aderentes, para aço CP190RB pós-tracionamento

OBSERVAÇÃO

fptk = carga de ruptura mínima;

fpyk = carga a 1% de deformação mínima.

<sup>&</sup>lt;sup>1</sup> Peso nominal, conforme NBR7483:2004.

<sup>&</sup>lt;sup>2</sup> Para a determinação da força de protensão, foram respeitados os limites de 0,74fptk e 0,82fpyk, estabelecidos pela NBR6118:2003 e os valores mínimos de fptk e fpyk indicados na Tabela 1, sendo:

|                                        |       |       | NICHOS | DE PROTEI | ISÃO VERT | TICAIS PARA α = 10° |
|----------------------------------------|-------|-------|--------|-----------|-----------|---------------------|
| NÚMERO DE<br>CORDOALHAS<br>DE Ø12,7 mm | 2 e 3 | 4 a 7 | 8 a 12 | 13 a 22   | 23 a 31   |                     |
| NÚMERO DE<br>CORDOALHAS<br>DE Ø15,2 mm | 2 e 3 | 4 a 6 | 7 a 9  | 10 a 15   | 16 a 22   |                     |
| A (cm)                                 | 27,5  | 27,5  | 37,3   | 47,8      | 55,4      | <u> </u>            |
| B (cm)                                 | 13,1  | 13,1  | 17,5   | 22,3      | 25,9      | U                   |
| C (cm)                                 | 14,4  | 14,4  | 19,9   | 25,4      | 29,5      | α                   |
| D (cm)                                 | 12,8  | 12,8  | 15,3   | 19,0      | 21,6      | 4                   |
| F (cm)                                 | 6,0   | 6,0   | 8,9    | 11,0      | 12,5      | ω                   |
| G (cm)                                 | 9,2   | 9,2   | 10,7   | 13,0      | 14,4      |                     |
| H (cm)                                 | 0,8   | 0,8   | 1,9    | 2,3       | 2,6       |                     |
| β (graus)                              | 15°   | 15°   | 20°    | 20°       | 20°       | <br> -              |
| U (cm)                                 | 12    | 14    | 18     | 25        | 27        |                     |
| V (cm)                                 | 16    | 19    | 27     | 37,5      | 40        | Image: 1            |
| W (cm)                                 | 15    | 18    | 25     | 25        | 27        | lmagem 4            |
| X (cm)                                 | 18    | 19    | 27     | 37,5      | 40        |                     |

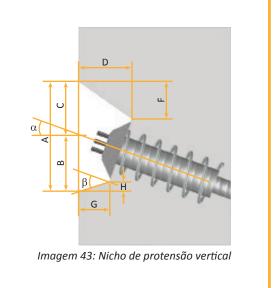



Tabela 19: Nichos verticais e distâncias mínimas entre ancoragens

|                                        |       | ı     | NICHOS DE | PROTENS | ÃO HORIZ |
|----------------------------------------|-------|-------|-----------|---------|----------|
| NÚMERO DE<br>CORDOALHAS<br>DE Ø12,7 mm | 2 e 3 | 4 a 7 | 8 a 12    | 13 a 22 | 23 a 31  |
| NÚMERO DE<br>CORDOALHAS<br>DE Ø15,2 mm | 2 e 3 | 4 a 6 | 7 a 9     | 10 a 15 | 16 a 22  |
| I (cm)                                 | 10,5  | 10,5  | 13,0      | 19,0    | 22,0     |
| J (cm)                                 | 20,7  | 20,7  | 24,9      | 33,8    | 42,3     |
| K (cm)                                 | 47,1  | 47,1  | 58,0      | 72,6    | 81,3     |
| L (cm)                                 | 33,6  | 33,6  | 39,5      | 49,7    | 62,2     |
| M (cm)                                 | 7,5   | 7,5   | 9,1       | 12,3    | 15,4     |
| N (cm)                                 | 16,4  | 16,4  | 20,0      | 17,0    | 17,0     |
| O (cm)                                 | 56,8  | 56,8  | 68,4      | 92,9    | 116,2    |
| P (cm)                                 | 11,5  | 11,5  | 13,5      | 17,0    | 23,0     |
| R (cm)                                 | 13,0  | 15,5  | 19,5      | 24,5    | 27,5     |
| S (cm)                                 | 2,5   | 2,5   | 2,5       | 2,5     | 2,5      |
| T (cm)                                 | 10,5  | 13,0  | 17,0      | 22,0    | 25,0     |

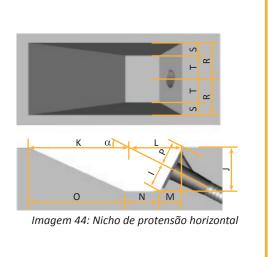
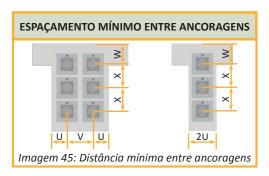




Tabela 20: Nichos horizontais



**ATENÇÃO!** 

- Os nichos indicados nas Tabelas 19 e 20 foram dimensionados para o equipamento Rudloff de protensão no caso de inclinações do cabo iguais a 10° e 20°, respectivamente. Para valores diferentes, deve-se consultar o catálogo eletrônico da Rudloff, disponível em www.rudloff.com.br
- As distâncias indicadas são mínimas e foram calculadas para fck=25 MPa.



## 

 FRETAGEM TIPO "1"
 5-1
 6-1

 ØN1 (mm)
 8,0
 8,0

 ØN2 (mm)
 10,0
 10,0

 Tipo de Aço
 CA-50
 CA-50

FRETAGEM DE LAJES TIPO "1"

FRETAGEM DE LAJES TIPO "2"

*OBS.:* -N1: Uma barra entre cada cabo monocordoalha.

-N2: Barras corridas ao longo da borda da laje.

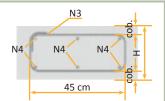
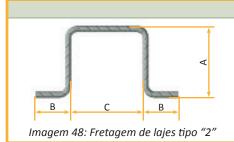
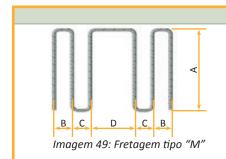




Imagem 47: Fretagem de lajes tipo "1", para cabos EL 5-2 a 5-4 e EL 6-2 a 6-4

OBS.: -N3: Uma barra a cada 20 cm, ao longo de toda a borda da laje.
-N4: Barras corridas ao longo da borda da laje.


Tabela 21: Fretagem de lajes tipo "1".



EL 5-1 e EL 6-1

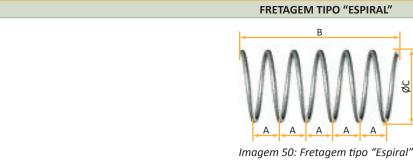

| THETAGENTEE      | LAJES II |      |      |      |       |      |      |      |  |  |
|------------------|----------|------|------|------|-------|------|------|------|--|--|
|                  | 5-1      | 5-2  | 5-3  | 5-4  | 6-1   | 6-2  | 6-3  | 6-4  |  |  |
| A (cm)           | 12       | 12   | 14   | 14   | 12    | 12   | 14   | 14   |  |  |
| B (cm)           | 6        | 6    | 8    | 8    | 6     | 6    | 8    | 8    |  |  |
| C (cm)           | 12       | 12   | 16   | 16   | 12    | 12   | 16   | 20   |  |  |
| Ø BARRA (mm)     | 10,0     | 10,0 | 10,0 | 10,0 | 10,0  | 10,0 | 10,0 | 10,0 |  |  |
| COMP. UNIT. (cm) | 48       | 48   | 60   | 60   | 48    | 48   | 60   | 64   |  |  |
| QUANTIDADE       | 2        | 2    | 4    | 4    | 2     | 2    | 4    | 4    |  |  |
| TIPO DE AÇO      |          | CA-  | -50  |      | CA-50 |      |      |      |  |  |

Tabela 22: Fretagem de lajes tipo "2"



| FRETAGEM TIPO "N | vi"         |      |      |      |      |      |  |
|------------------|-------------|------|------|------|------|------|--|
|                  | 5-4         | 5-6  | 5-7  | 6-3  | 6-4  | 6-6  |  |
| A (cm)           | 24          | 29   | 29   | 42   | 42   | 42   |  |
| B (cm)           | 0           | 4,5  | 4,5  | 8    | 8    | 8    |  |
| C (cm)           | 8           | 4,5  | 4,5  | 7    | 7    | 7    |  |
| D (cm)           | 8           | 11   | 11   | 12   | 12   | 12   |  |
| Ø BARRA (mm)     | 10,0        | 10,0 | 10,0 | 12,5 | 12,5 | 12,5 |  |
| COMP. UNIT. (cm) | 110         | 191  | 191  | 276  | 276  | 276  |  |
| QUANTIDADE       | 4           | 4    | 4    | 4    | 4    | 4    |  |
| TIPO DE AÇO      | CA-50 CA-50 |      |      |      |      |      |  |

Tabela 23: Fretagem tipo "M"



|                   | Imagem 50: Fretagem tipo "Espiral" |                                          |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |
|-------------------|------------------------------------|------------------------------------------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
|                   | 5-4                                | 5-6                                      | 5-7  | 5-8  | 5-9  | 5-12 | 5-19 | 5-22 | 5-27 | 5-31 | 6-3  | 6-4  | 6-6  | 6-7  | 6-8  | 6-9  | 6-12 | 6-15 | 6-19 | 6-22 |
| A (cm)            | 5                                  | 5                                        | 5    | 5    | 5    | 5    | 7    | 7    | 7    | 7    | 5    | 5    | 5    | 5    | 5    | 5    | 7    | 7    | 7    | 7    |
| B (cm)            | 25                                 | 30                                       | 30   | 35   | 35   | 35   | 42   | 49   | 56   | 56   | 25   | 30   | 30   | 35   | 35   | 35   | 49   | 49   | 49   | 56   |
| Ø C (cm)          | 14                                 | 19                                       | 19   | 22   | 22   | 25   | 31   | 31   | 40   | 42   | 14   | 19   | 20   | 25   | 25   | 25   | 31   | 31   | 40   | 42   |
| N° DE VOLTAS      | 5                                  | 6                                        | 6    | 7    | 7    | 7    | 6    | 7    | 8    | 8    | 5    | 6    | 6    | 7    | 7    | 7    | 7    | 7    | 7    | 8    |
| Ø BARRA (mm)      | 10,0                               | 10,0                                     | 10,0 | 12,5 | 12,5 | 12,5 | 16,0 | 16,0 | 16,0 | 16,0 | 10,0 | 10,0 | 10,0 | 12,5 | 12,5 | 12,5 | 16,0 | 16,0 | 16,0 | 16,0 |
| COMP. UNIT. (cm)  | 220                                | 220 360 360 484 484 550 585 682 1006 105 |      |      |      |      |      |      | 1056 | 220  | 360  | 380  | 550  | 550  | 550  | 682  | 682  | 1006 | 1056 |      |
| TIPO DE AÇO CA-50 |                                    |                                          |      |      |      |      |      |      |      |      |      |      |      | CA   | -50  |      |      |      |      |      |

Tabela 24: Fretagem tipo "Espiral".

## O QUE MAIS A RUDLOFF FAZ







USINAGEM MECÂNICA PARA FINS DIVERSOS







EMENDAS PARA BARRAS DE AÇO







APARELHOS DE APOIO







#### São Paulo - SP:

Rua Bogaert, 64 - Vila Vermelha - CEP 04298-020 TEL.: (11) 2083-4500 - FAX: (11) 2947-7773

#### Curitiba - PR:

Rua Padre Antônio, 247 - Alto da Glória - CEP 80030-100 TEL. / FAX: (41) 3262-8383 - curitiba@rudloff.com.br